从0开始yolov8模型目标检测训练 验证和测试

从0开始yolov8模型目标检测训练 验证和测试 Lixiaofeng 2024-02-03 14:15:00 1348

1. 大环境

首先有大环境,即已经准备好了python、nvidia驱动、cuda、cudnn等。

2. yolov8的虚拟环境

2.1 创建虚拟环境

conda create -n yolov8 python=3.10

2.2 激活虚拟环境

注意:激活虚拟环境的时候,需要清楚自己创建的虚拟环境(yolov8)是在root权限下,还是在user权限下,否则,当使用source activate yolov8激活环境的时候,可能一直会提示Could not find conda environment: yolov5s;You can list all discoverable environments with conda info —envs

source activate yolov8
# 如果是windows的话,使用
conda activate yolov8
# 关闭虚拟环境
source deactivate yolov8
# 删除虚拟环境
conda remove -n yolov8 --all
# 删除虚拟环境中的某个包
conda remove --name $yolov8  $package_name 
# 添加conda的清华镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn

其它:普通用户和root用户权限相互切换的方法:

exit
或
su user(user是自己安装时的用户名)

2.3 在虚拟环境中安装yolov8的必要依赖项

进入yolov8项目的根目录下

cd MyTrain/ultralytics-main

3. 准备数据集

3.1 数据集介绍

采用26058张图片,标签文件是之前用标注精灵标注导出的json文件。

3.2 标签统计

统计标注文件包含的标签类别及数量如下

'suv': 19843, 'car': 222010, 'van': 8538, 'bigtru': 11775, 'bus': 7733, 'tralight': 32538, 'tricycle': 9454, 'elec': 45199, 'pedes': 36552, 'smatru': 2281, 'bike': 7908, 'coach': 443, 'tank': 2659, 'pickup': 943, 'trailer': 438, 'mpv': 1839, ' car': 1354, ' ca   r': 1, 'elec ': 12, 'moto': 843, 'crane': 173, 'warm': 151644, 'percycle': 127, 'engine': 157, 'polic': 398, 'coni': 9758, 'pedesd': 13, 'van ': 1, 'motopoli': 22, 'escort': 26, 'tralight ': 1, 'right': 78, 'left': 114, 'stopline': 4, 'zebraline': 78, 'bull': 19, 'excava': 4, 'suv ': 2, 'zebraliner': 1, 'car ': 3, '            ': 1, 'car      ': 1, 'ambu': 168, 'sanJiaoWarm': 778, 'suLiaoDao': 506, 'zhiXiang': 1248, 'suLiaoDai': 414, 'lunTai': 643, 'yiZi': 20, 'ar': 1, '  car': 141, 'bus-c': 2, 'elerc': 1, 'pedes ': 1, 'pedesr': 3, 'carr': 1, 'bigtrur': 2, 'elecr': 12, 'suvr': 72,

上述标签类别解释:上述存在的一些奇怪标签,如’carr’、‘bigtrur’、’pedes ‘等很显然是由于误输入’r’或空格字符导致的,故在转换为yolov5的标注格式的时候,需考虑在内。故采用映射如下,得到标签及ID。其中标签’sanJiao Warm’, ‘suLiaoDao’, ‘zhiXiang’, ‘suLiaoDai’, ‘lunTai’, ‘yiZi’等标签不作为训练。

{'suv': 1, 'car': 1, 'van': 1, 'bigtru': 3, 'bus': 2, 'tralight': 9, 'tricycle': 6, 'elec': 5, 'pedes': 0, 'smatru': 3, 'bike': 4, 'coach': 2, 'tank': 3, 'pickup': 1, 'trailer': 3, 'mpv': 1, ' car': 1, ' ca   r': 1, 'elec ': 5, 'moto': 5, 'crane': 3, 'warm': 8, 'engine': 3, 'polic': 10, 'coni': 7, 'pedesd': 0, 'van ': 1, 'motopoli': 5, 'escort': 3, 'tralight ': 9, 'bull': 3, 'excava': 3, 'suv ': 1, 'car ': 1,  'car      ': 1, 'ambu': 10, 'ar': 1, '  car': 1, 'bus-c': 2, 'elerc': 5, 'pedes ': 0,  'pedesr': 0, 'carr': 1, 'bigtrur': 3, 'elecr': 5, 'suvr': 1}

标签重新分配如下

pedes: 0, car: 1, bus: 2, truck: 3, bike: 4, elec: 5, tricycle: 6, coni: 7, warm: 8, tralight: 9, special_vehicles: 10

3.3 转为yolov8的txt

yolov8的标签文件和yolov5是一样的,需要归一化(0-1)的目标类型、 Box中心点坐标x、Box中心点坐标y、Box宽、Box高

--datasTrain
------train_list.txt    # 包含训练每张图片的路径
------val_list.txt
------test_list.txt
------images
----------train         # 存放训练数据集的图片(.jpg)
----------val
----------test
------labels
----------train            # 存放训练图片对应的标签文件(.txt)
----------val
----------tes

datasTrain/labels/train目录下的文件示例,如下为data220829_0001.jpg对应的data220829_0001.txt的前6行内容。

2 0.29427 0.33842 0.19479 0.27685
3 0.11380 0.56111 0.22760 0.43703
3 0.39479 0.41064 0.11041 0.17314
1 0.39401 0.29490 0.02760 0.06759
1 0.40729 0.25833 0.05 0.07222
1 0.61875 0.16574 0.02604 0.04444

4. 准备训练

4.1 模型的配置文件

修改路径下的配置文件 ultralytics-main/ultralytics/yolo/cfg/default.yaml 参数,以执行相应的操作(train、val、test)。

yolo/cfg/default.yaml 中如下参数需设置或查验与任务是否一致(包含训练模式示例值)

task: detect  # inference task, i.e. detect, segment, classify
mode: train  # YOLO mode, i.e. train, val, predict, export

# Train settings -------------------------------------------------
# model 使用.pt文件是通过预训练模型
# model:  ./preDetectModel/yolov8s.pt 
# model 使用.yaml文件是从头开始训练,使用COCO模型来预训练口罩检测不可取,必须从头训练
model:  D:/yolov5train/yolov8_main/ultralytics/models/v8/yolov8s.yaml  
# data: path to data file, i.e. coco128.yaml
data:  D:/yolov5train/yolov8_main/ultralytics/yolo/v8/detect/data/my_yolov8.yaml
epochs: 300  # number of epochs to train for
patience: 50  # epochs to wait for no observable improvement for early stopping of training
batch: 2  # number of images per batch (-1 for AutoBatch)
imgsz: 960  # size of input images as integer or w,h
save: True  # save train checkpoints and predict results
save_period: 10 # Save checkpoint every x epochs (disabled if < 1,设为-1则禁用保存检查点)

single_cls: False  # train multi-class data as single-class
rect: True  # support rectangular train/val if mode='train'/'val'
resume: False  # resume training from last checkpoint

上述参数详解参考博客:https://blog.csdn.net/weixin_45277161/article/details/131047101

其中模型的配置文件位于ultralytics-main/ultralytics/models/v8/yolov8s.yaml ,该文件包含主要内容如下:

# Parameters
nc: 11  # number of classes

scales: # model compound scaling constants
# [depth, width, max_channels]
s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs

# YOLOv8.0n backbone
backbone:
# YOLOv8.0n head
head:

4.2 数据的配置文件

数据集的配置文件模仿ultralytics-main/ultralytics/datasets/coco.yaml文件的写法,记为my_yolov8.yaml,该文件包含内容如下

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:/yolov5train/datasTrain3_More  # dataset root dir
train: D:/yolov5train/datasTrain3_More/train_list.txt  # train images (relative to 'path') 
val: D:/yolov5train/datasTrain3_More/val_list.txt  # val images (relative to 'path') 
test: D:/yolov5train/datasTrain3_More/test_list.txt

# Classes
names:
  0: pedes
  1: car
  2: bus
  3: truck
  4: bike
  5: elec
  6: tricycle
  7: coni
  8: warm
  9: tralight
  10: specialVehicle

4.3 train的.py文件

其实train.py文件中的参数在ultralytics-main/ultralytics/yolo/cfg/default.yaml中如果设置好了的话,就可以不用管了。如果没有设置/yolo/cfg/default.yaml的话,采用如下方式启动训练,否则,采用4.4所述的方式启动训练命令。

ultralytics-main/ultralytics$yolo task=detect mode=train model=models/v8/yolov8s.yaml data=/ultralytics/yolo/v8/detect/data/my_yolov8.yaml imgsz=960 batch=-1 epochs=300 patience=50 workers=4
# 同时也尽可以正确设置/yolo/cfg/default.yaml中的参数

4.4 训练命令

cd ultralytics-main/ultralytics/
yolo cfg=./yolo/cfg/default.yaml  
或
yolo cfg = ./yolo/cfg/default.yaml task=detect mode=train rect=True batch = 64 epochs = 300 imgsz=960 data=my_data.yaml
#  my_data.yaml如下
path: home/MyTrain/datas/  # dataset root dir
train: images/train  # train images (relative to 'path') 128 images
val: images/val  # val images (relative to 'path') 128 images
names:
 0: pedes
 1: car
 2: bus
 3: truck
 4: bike
 5: moto
 6: tricycle
 7: coni
 8: warn
 9: tralight
 10: specialVehicle
# names:
#   0: 行人
#   1: 轿车
#   2: 公交
#   3: 货车
#   4: 自行车
#   5: 摩托车
#   6: 三轮车
#   7: 锥桶
#   8: 警示标志
#   9: 信号灯
#   10: 特殊车辆

【问题1】

300轮的正常训练结束了,但是仍然报了一个pyplot的奇怪的问题如下

plt.switch_backend(original_backend)
File "/home/user/anaconda3/envs/yolov8/lib/python3.10/site-packages/matplotlib/pyplot.py", line 279, in switch_backend
raise ImportError(
ImportError: Cannot load backend 'TkAgg' which requires the 'tk' interactive framework, as 'headless' is currently running

matplotlib版本过高导致的,卸载环境中matplotlib版本,重新安装。

pip uninstall matplotlib
pip install matplotlib==3.2.1
# 由于 v8在训练的时候,大环境ultralytics 8.0.155 requires matplotlib>=3.2.2。
# 所以又重新卸载了 装了一个刚好大于等于3.2.2版本的matplotlib
# 如下
pip install matplotlib==3.3.0

5. 验证和测试

5.1 验证

修改路径下的配置文件 ultralytics-main/ultralytics/yolo/cfg/default.yaml 参数如下,要验证验证集,需将Val/Test settings下的split: val设置为val

mode: val 
——————————————————————————
# Val/Test settings ----------------------------------
val: True              # (bool) validate/test during training
split: val          # (str) dataset split to use for validation
save_json: False      # (bool) save results to JSON file
save_hybrid: False  # (bool) save (labels + additional predictions)
conf:  0.25         # (float, optional)  (default 0.25 predict, 0.001 val)
iou: 0.5              # (float) intersection over union (IoU) threshold for NMS
max_det: 300          # (int) maximum number of detections per image
half: False          # (bool) use half precision (FP16)
dnn: False          # (bool) use OpenCV DNN for ONNX inference
plots: True          # (bool) save plots during train/val

执行

cd ultralytics-main/ultralytics/
yolo cfg=./yolo/cfg/default.yaml

5.2 测试

修改路径下的配置文件 ultralytics-main/ultralytics/yolo/cfg/default.yaml 参数如下,要验证测试集,需将Val/Test settings下的split: val改设置为test

mode: val 
——————————————————————————
# Val/Test settings ----------------------------------
val: True              # (bool) validate/test during training
split: test          # (str) dataset split to use for validation

执行

cd ultralytics-main/ultralytics/
yolo cfg=./yolo/cfg/default.yaml  
或
yolo cfg = ./yolo/cfg/default.yaml task=detect mode=predict source=/home/mydata/ save_txt=True
声明:本文内容由易百纳平台入驻作者撰写,文章观点仅代表作者本人,不代表易百纳立场。如有内容侵权或者其他问题,请联系本站进行删除。
红包 点赞 收藏 评论 打赏
评论
0个
内容存在敏感词
手气红包
    易百纳技术社区暂无数据
相关专栏
置顶时间设置
结束时间
删除原因
  • 广告/SPAM
  • 恶意灌水
  • 违规内容
  • 文不对题
  • 重复发帖
打赏作者
易百纳技术社区
Lixiaofeng
您的支持将鼓励我继续创作!
打赏金额:
¥1易百纳技术社区
¥5易百纳技术社区
¥10易百纳技术社区
¥50易百纳技术社区
¥100易百纳技术社区
支付方式:
微信支付
支付宝支付
易百纳技术社区微信支付
易百纳技术社区
打赏成功!

感谢您的打赏,如若您也想被打赏,可前往 发表专栏 哦~

举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

审核成功

发布时间设置
发布时间:
是否关联周任务-专栏模块

审核失败

失败原因
备注
拼手气红包 红包规则
祝福语
恭喜发财,大吉大利!
红包金额
红包最小金额不能低于5元
红包数量
红包数量范围10~50个
余额支付
当前余额:
可前往问答、专栏板块获取收益 去获取
取 消 确 定

小包子的红包

恭喜发财,大吉大利

已领取20/40,共1.6元 红包规则

    易百纳技术社区