tensorRT高级-yolov5模型导出、编译到推理(无封装)

tensorRT高级-yolov5模型导出、编译到推理(无封装) 搬砖中~ 2023-12-27 15:46:55 299

杜老师推出的 tensorRT从零起步高性能部署 课程,之前有看过一遍,但是没有做笔记,很多东西也忘了。这次重新撸一遍,顺便记记笔记。
本次课程学习 tensorRT 高级-yolov5模型导出、编译到推理(无封装)
课程大纲可看下面的思维导图

1.YOLOv5导出

我们来来学习 yolov5 onnx 的导出

我们先导出官方的 onnx 以及我们修改过后的 onnx 看看有什么区别
在官方 onnx 导出时,遇到了如下的问题:

最终发现是 pytorch 版本的原因,yolov5-6.0 有点老了,和现在的高版本的 pytorch 有些不适配也正常
因此博主拿笔记本的低版本 pytorch 导出的,如下所示:

图1-2 官方yolov5-6.0的onnx导出

我们再导出经过修改后的 onnx,如下所示:

图1-3 修改后yolov5-6.0的onnx导出

我们利用 Netron 来看下官方的 onnx,首先是输入有 4 个维度,其中的 3 个维度都是动态,它的输出包含 4 项,实际情况下我们只需要 output 这 1 项就行,其次模型结构非常乱

图1-4 官方onnx

我们再来看下修改后的模型,修改后的模型动态维度只有 batch,没有宽高,输出也只有一个,其次相比于之前更加简洁,更加规范

图1-5 修改后的onnx

OK!知道二者区别后,我们看如何修改才能导出我们想要的 onnx 效果,首先是动态,保证 batch 维度动态即可,宽高不要动态。需要修改 yolov5-6.0 第 73 行,onnx 导出的代码,删除宽高的动态,修改后的代码如下:

# ======未修改的代码======

# torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
#                   training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
#                   do_constant_folding=not train,
#                   input_names=['images'],
#                   output_names=['output'],
#                   dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'},  # shape(1,3,640,640)
#                                 'output': {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
#                                 } if dynamic else None)

# ======修改后的代码======

torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
                  training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
                  do_constant_folding=not train,
                  input_names=['images'],
                  output_names=['output'],
                  dynamic_axes={'images': {0: 'batch'},  # shape(1,3,640,640)
                                'output': {0: 'batch'}  # shape(1,25200,85)
                               } if dynamic else None)

修改后重新导出后可以发现输入 batch 维度动态,宽高不动态,但是似乎 output 还是动态的,这是因为在 output 这个节点之前还有引用 output 的关系在里面,所以造成了它的 shape 是通过计算得到的,而并不是通过确定的值指定得到的,它没有确定的值,所以需要我们接着改。

图1-6 onnx修改1

第二件事情我们来确保输出只有 1 项,把其它 3 项干掉,在 models/yolo.py 第 73 行,Detect 类中的返回值中删除不必要的返回值,修改后的代码如下:

# ======未修改的代码======

# return x if self.training else (torch.cat(z, 1), x)

# ======修改后的代码======

return x if self.training else torch.cat(z, 1)

接着导出,可以看到输出变成 1 个了,如我们所愿

图1-7 onnx修改2

接下来我们删除 Gather Unsqueeze 等不必要的节点,这个主要是由于引用 shape 的返回值所带来的这些节点的增加,在 model/yolo.py 第 56 行,修改代码如下:

# ======未修改的代码======

# bs, _, ny, nx = x[i].shape

# ======修改后的代码======

bs, _, ny, nx = map(int, x[i].shape)

可以看到干净了不少

图1-8 onnx修改3

但是还是有点脏的样子,诸如 ConstantOfShape 应该干掉,还有 reshape 节点可以看到 batch 维度不是 -1,当使用动态 batch 的时候会出问题,我们接着往下改

在 model/yolo.py 第 57 行,修改代码如下:

# ======未修改的代码======

# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
# if not self.training:
#     ...
#     z.append(y.view(bs, -1, self.no))

# ======修改后的代码======

bs = -1
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

if not self.training:
    ...
    z.append(y.view(-1, self.na * ny * nx, self.no))

再接着导出一下,可以看到此时的 Reshape 的 -1 在 batch 维度上

图1-9 onnx修改4

但是还是存在 ConstantOfShape 等节点,这个主要是由于 make_grid 产生的,我们需要让 anchor_grid 断开连接,把它变成一个常量值,直接存储下来,在 model/yolo.py 第 59 行,修改代码如下:

# ======未修改的代码======

# if not self.training:  # inference
#     if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
#         self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

#     y = x[i].sigmoid()
#     if self.inplace:
#         y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
#         y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
#     else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
#         xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
#         wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
#         y = torch.cat((xy, wh, y[..., 4:]), -1)
#     z.append(y.view(bs, -1, self.no))

# ======修改后的代码======

if not self.training:  # inference
    if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
        self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

        anchor_grid = (self.anchors[i].clone() * self.stride[i]).view(1, -1, 1, 1, 2)
        y = x[i].sigmoid()
        if self.inplace:
            y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
            y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * anchor_grid  # wh
            else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                wh = (y[..., 2:4] * 2) ** 2 * anchor_grid  # wh
                y = torch.cat((xy, wh, y[..., 4:]), -1)
                #z.append(y.view(bs, -1, self.no))
                z.append(y.view(bs, self.na * ny * nx, self.no))

接着再导出看下效果,可以看到多余部分的节点被干掉了,直接把它存储到 initializer 里面了,这就是我们最终想要达成的一个效果

图1-10 onnx修改5

>Note:值的一提的是,在新版 yolov5 中的 onnx 模型导出时其实上述大部分部分问题已经考虑并解决了,但是依旧还是存在某些小问题,具体可参考 Ubuntu20.04部署YOLOv5

##2.YOLOv5推理
>onnx 导出完成后,接下来看看 C++ 推理时的代码

我们先去拿到 pytorch 推理时的结果,如下图所示:

图2-1 pytorch检测

推理过后的图片如下所示:

图2-2 car-pytorch

之后我们再到 tensorRT 里面看看推理后的效果

首先看看 main.cpp 中 build_model 部分,可以发现它和我们分类器的案例完全一模一样,先 make run 一下看是否能正常生成 yolov5s.trtmodel 如下所示:

图2-3 yolov5s.trtmodel的生成

可以看到模型生成和推理成功了,我们来看下 tensorRT 执行的效果:

图2-4 car-tensorRT

我们再来看下 inference 部分,与分类器相比,无非就是预处理和后处理不一样,其它都差不多,然后就到了 letter box 阶段了,等比缩放居中长边对其并居中,代码如下:

// letter box
auto image = cv::imread("car.jpg");
// 通过双线性插值对图像进行resize
float scale_x = input_width / (float)image.cols;
float scale_y = input_height / (float)image.rows;
float scale = std::min(scale_x, scale_y);
float i2d[6], d2i[6];
// resize图像,源图像和目标图像几何中心的对齐
i2d[0] = scale;  i2d[1] = 0;  i2d[2] = (-scale * image.cols + input_width + scale  - 1) * 0.5;
i2d[3] = 0;  i2d[4] = scale;  i2d[5] = (-scale * image.rows + input_height + scale - 1) * 0.5;

cv::Mat m2x3_i2d(2, 3, CV_32F, i2d);  // image to dst(network), 2x3 matrix
cv::Mat m2x3_d2i(2, 3, CV_32F, d2i);  // dst to image, 2x3 matrix
cv::invertAffineTransform(m2x3_i2d, m2x3_d2i);  // 计算一个反仿射变换

cv::Mat input_image(input_height, input_width, CV_8UC3);
cv::warpAffine(image, input_image, m2x3_i2d, input_image.size(), cv::INTER_LINEAR, cv::BORDER_CONSTANT, cv::Scalar::all(114));  // 对图像做平移缩放旋转变换,可逆
cv::imwrite("input-image.jpg", input_image);

int image_area = input_image.cols * input_image.rows;
unsigned char* pimage = input_image.data;
float* phost_b = input_data_host + image_area * 0;
float* phost_g = input_data_host + image_area * 1;
float* phost_r = input_data_host + image_area * 2;
for(int i = 0; i < image_area; ++i, pimage += 3){
    // 注意这里的顺序rgb调换了
    *phost_r++ = pimage[0] / 255.0f;
    *phost_g++ = pimage[1] / 255.0f;
    *phost_b++ = pimage[2] / 255.0f;
}

上述代码实现了 YOLOv5 中的 letterbox 操作,用于将输入图像按照等比例缩放并填充到指定大小的网络输入。首先,通过双线性插值计算缩放比例,然后构建一个 2x3 的仿射变换矩阵,用于将原图像按照缩放比例进行缩放,并将其填充到指定大小的输入图像中。接着,使用 cv::warpAffine 函数进行缩放和平移变换,得到输入图像 input_image。最后,将图像数据转换为网络输入格式,将像素值归一化到 0~1 之间,并存储到网络输入数据指针 input_data_host 中,以适应网络的输入要求

这个过程其实是可以通过我们之前讲的 warpAffine 来实现的,具体细节可参考 YOLOv5推理详解及预处理高性能实现,这里不再赘述,变换后的图像如下所示:

图2-5 letterbox图像

将输入图像做下预处理塞到 tensorRT 中推理,拿到推理后的结果后还需要进行后处理,具体后处理代码如下所示:

// decode box:从不同尺度下的预测狂还原到原输入图上(包括:预测框,类被概率,置信度)
vector<vector<float>> bboxes;
float confidence_threshold = 0.25;
float nms_threshold = 0.5;
for(int i = 0; i < output_numbox; ++i){
    float* ptr = output_data_host + i * output_numprob;
    float objness = ptr[4];
    if(objness < confidence_threshold)
        continue;

    float* pclass = ptr + 5;
    int label     = std::max_element(pclass, pclass + num_classes) - pclass;
    float prob    = pclass[label];
    float confidence = prob * objness;
    if(confidence < confidence_threshold)
        continue;

    // 中心点、宽、高
    float cx     = ptr[0];
    float cy     = ptr[1];
    float width  = ptr[2];
    float height = ptr[3];

    // 预测框
    float left   = cx - width * 0.5;
    float top    = cy - height * 0.5;
    float right  = cx + width * 0.5;
    float bottom = cy + height * 0.5;

    // 对应图上的位置
    float image_base_left   = d2i[0] * left   + d2i[2];
    float image_base_right  = d2i[0] * right  + d2i[2];
    float image_base_top    = d2i[0] * top    + d2i[5];
    float image_base_bottom = d2i[0] * bottom + d2i[5];
    bboxes.push_back({image_base_left, image_base_top, image_base_right, image_base_bottom, (float)label, confidence});
}
printf("decoded bboxes.size = %d\n", bboxes.size());

// nms非极大抑制
std::sort(bboxes.begin(), bboxes.end(), [](vector<float>& a, vector<float>& b){return a[5] > b[5];});
std::vector<bool> remove_flags(bboxes.size());
std::vector<vector<float>> box_result;
box_result.reserve(bboxes.size());

auto iou = [](const vector<float>& a, const vector<float>& b){
    float cross_left   = std::max(a[0], b[0]);
    float cross_top    = std::max(a[1], b[1]);
    float cross_right  = std::min(a[2], b[2]);
    float cross_bottom = std::min(a[3], b[3]);

    float cross_area = std::max(0.0f, cross_right - cross_left) * std::max(0.0f, cross_bottom - cross_top);
    float union_area = std::max(0.0f, a[2] - a[0]) * std::max(0.0f, a[3] - a[1]) 
        + std::max(0.0f, b[2] - b[0]) * std::max(0.0f, b[3] - b[1]) - cross_area;
    if(cross_area == 0 || union_area == 0) return 0.0f;
    return cross_area / union_area;
};

for(int i = 0; i < bboxes.size(); ++i){
    if(remove_flags[i]) continue;

    auto& ibox = bboxes[i];
    box_result.emplace_back(ibox);
    for(int j = i + 1; j < bboxes.size(); ++j){
        if(remove_flags[j]) continue;

        auto& jbox = bboxes[j];
        if(ibox[4] == jbox[4]){
            // class matched
            if(iou(ibox, jbox) >= nms_threshold)
                remove_flags[j] = true;
        }
    }
}
printf("box_result.size = %d\n", box_result.size());

上述代码实现了 YOLOv5 目标检测中的后处理步骤,将模型输出的预测框信息进行解码并进行非极大抑制(NMS)处理,得到最终的目标检测结果。

  1. 解码预测框:从模型输出的预测中筛选出置信度(confidence)大于阈值(confidence_threshold)的预测框。然后根据预测框的中心点、宽度和高度,计算出预测框在原输入图像上的位置(image_base_left、image_base_right、image_base_top、image_base_bottom),并将结果存储在 bboxes 中。

  2. 非极大抑制(NMS):对 bboxes 中的预测框进行按照置信度降序排序。然后使用 IOU 计算两个预测框的重叠程度。如果两个预测框的类别相同且 IOU 大于 NMS 阈值,则认为这两个预测框是重复的,将置信度较低的预测框从结果中移除。最终得到不重复的预测框,存储在 box_result 中。

整个后处理过程实现了从模型输出到最终目标检测结果的转换,包括解码预测框和非极大抑制。这样可以得到准确的目标检测结果,并去除冗余的重复检测框。

关于 decode 解码和 NMS 的具体细节可以参考 YOLOv5推理详解及预处理高性能实现

之前课程提到的 warpAffine 就可以替换为这里的预处理,用 CUDA 核函数进行加速,之前提到的 YoloV5 的核函数后处理也可以替换这里的后处理,从而达到高性能

整个 Yolov5 从模型的修改到导出再到推理拿到结果,没有封装的流程就如上述所示

3.补充知识

对于 yolov5 如何导出模型并利用起来,你需要知道:

  1. 修改 export_onnx 时的导出参数,使得动态维度指定为 batch,去掉 width 和 height 的指定
  2. 导出时,对 yolo.py 进行修改,使得后处理能够简化,并将 anchor 合并到 onnx 中
  3. 预处理部分采用 warpaffine,描述对图像的平移和缩放

关于 yolov5 案例的知识点:(from 杜老师)

  1. yolov5 的预处理部分,使用了仿射变换,请参照仿射变换原理
  • letterbox 采用双线性插值对图像进行 resize,并且使源图像和目标图像几何中心对齐

  • 使用仿射变换实现 letterbox 的理由是
    便于操作,得到变换矩阵即可
    便于逆操作,实现逆矩阵映射即可
    便于 cuda 加速,cuda 版本的加速已经在 cuda 系列中提到了 warpaffine 实现
    该加速可以允许 warpaffine、normalize、除以255、减均值除以标准差、变换 RB 通道等等在一个核函数中实现,性能最好

2.后处理部分,反算到图像坐标,实际上乘以逆矩阵

  • 由于逆矩阵实际上有效自由度是 3,也就是 d2i 中只有 3 个数是不同的,其他都一样。也因此你看到的 d2i[0]、d2i[2]、d2i[5] 在起作用

导出 yolov5-6.0 需要修改以下地方

# line 55 forward function in yolov5/models/yolo.py 
# bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
# modified into:

bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
bs = -1
ny = int(ny)
nx = int(nx)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

# line 70 in yolov5/models/yolo.py
#  z.append(y.view(bs, -1, self.no))
# modified into:
z.append(y.view(bs, self.na * ny * nx, self.no))

############# for yolov5-6.0 #####################
# line 65 in yolov5/models/yolo.py
# if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
#    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
# modified into:
if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

# disconnect for pytorch trace
anchor_grid = (self.anchors[i].clone() * self.stride[i]).view(1, -1, 1, 1, 2)

# line 70 in yolov5/models/yolo.py
# y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
# modified into:
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * anchor_grid  # wh

# line 73 in yolov5/models/yolo.py
# wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
# modified into:
wh = (y[..., 2:4] * 2) ** 2 * anchor_grid  # wh
############# for yolov5-6.0 #####################

# line 77 in yolov5/models/yolo.py
# return x if self.training else (torch.cat(z, 1), x)
# modified into:
return x if self.training else torch.cat(z, 1)

# line 52 in yolov5/export.py
# torch.onnx.export(dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'},  # shape(1,3,640,640)
#                                'output': {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)  修改为
# modified into:
torch.onnx.export(dynamic_axes={'images': {0: 'batch'},  # shape(1,3,640,640)
                                'output': {0: 'batch'}  # shape(1,25200,85)

总结

本次课程学习了无封装的 yolov5 模型从导出到编译再到推理的全部过程,学习了如何修改一个 onnx 达到我们想要的结果,同时 yolov5 CPU 版本的预处理和后处理的学习也帮助我们进一步去理解 CUDA 核函数上的实现。

文章来源csdn,如有侵权,请联系删除: https://blog.csdn.net/qq_40672115/article/details/132009159

声明:本文内容由易百纳平台入驻作者撰写,文章观点仅代表作者本人,不代表易百纳立场。如有内容侵权或者其他问题,请联系本站进行删除。
红包 点赞 收藏 评论 打赏
评论
0个
内容存在敏感词
手气红包
    易百纳技术社区暂无数据
相关专栏
置顶时间设置
结束时间
删除原因
  • 广告/SPAM
  • 恶意灌水
  • 违规内容
  • 文不对题
  • 重复发帖
打赏作者
易百纳技术社区
搬砖中~
您的支持将鼓励我继续创作!
打赏金额:
¥1易百纳技术社区
¥5易百纳技术社区
¥10易百纳技术社区
¥50易百纳技术社区
¥100易百纳技术社区
支付方式:
微信支付
支付宝支付
易百纳技术社区微信支付
易百纳技术社区
打赏成功!

感谢您的打赏,如若您也想被打赏,可前往 发表专栏 哦~

举报反馈

举报类型

  • 内容涉黄/赌/毒
  • 内容侵权/抄袭
  • 政治相关
  • 涉嫌广告
  • 侮辱谩骂
  • 其他

详细说明

审核成功

发布时间设置
发布时间:
是否关联周任务-专栏模块

审核失败

失败原因
备注
拼手气红包 红包规则
祝福语
恭喜发财,大吉大利!
红包金额
红包最小金额不能低于5元
红包数量
红包数量范围10~50个
余额支付
当前余额:
可前往问答、专栏板块获取收益 去获取
取 消 确 定

小包子的红包

恭喜发财,大吉大利

已领取20/40,共1.6元 红包规则

    易百纳技术社区